Thursday 12 February 2015

Health Benefits of Vitamin B5 or Pantothenic Acid


The health benefits of Vitamin B5, also known as Pantothenic Acid, include the alleviation of conditions like asthma, hair loss, allergies, stress and anxiety, respiratory disorders and heart problems. It also helps to boost immunity, reduce osteoarthritis and signs of aging, increase resistance to various types of infections, stimulate physical growth, and manage diabetes and skin disorders.
Vitamin B5 is widely known to be beneficial in treating serious mental disorders like chronic stress and anxiety. A healthy diet should contain an appropriate amount of Vitamin B5 to ensure good health and proper functioning of all the organ systems. It performs a wide variety of functions in our body, including the production of neurotransmitters in the brain, the fabrication of steroids, and the extraction of fats, proteins and other vital nutrients from food.
In a nutshell, the essence of Vitamin B5 affects every important aspect of maintaining your health.

Symptoms of Vitamin B5 Deficiency

The most common and irritating symptom of Vitamin B5 deficiency is burning foot syndrome, in which a person experiences lack of feeling in their feet, accompanied by intense inflammatory pain. Along with this comes a constant feeling of fatigue and weakness throughout the body. Other major symptoms include insomnia, anemia, vomiting, contraction of muscles and abnormal skin developments.

Important Sources of Vitamin B5

The most important sources of Vitamin B5 include mushrooms, broccoli, cabbage, legumes, salmon and collard green. There are other significant sources for this water soluble vitamin, including foods like eggs, fish, brewer’s yeast, nuts, milk and dairy products like cheese. You can also obtain the vitamin from wheat, peanut, soybeans, molasses and collard greens.

Health Benefits of Vitamin B5

Synthesizer
Vitamin B5 acts as a synthesizer of many important components required by the human body. For instance, it is essential for the formation of fats, proteins, carbohydrates, amino acids and antibiotics, while also stimulating adrenal hormones.
Stress Reducer
Vitamin B5 has the reputation of reducing stress and other serious mental problems like anxiety and depression, which ensures fitness of mind. It does this by regulating the hormones responsible for causing these mental conditions.
Heart Health
Vitamin B5 has an impressive record of keeping the human heart in normal working condition. It regulates the level of cholesterol and also helps in controlling blood pressure.
Builds Stamina
Vitamin B5 helps in reducing body fatigue and weariness and it sets the metabolic activities of the entire body on the right track. This means that this vitamin is capable of increasing the stamina of the human body to perform various tasks in an efficient and healthy way. This is a massive benefit of this vitamin, especially from the point of view of active individuals and athletes.
Skin and hair
More than anything else, Vitamin B5 helps to keep the skin healthy and attractive in appearance. It also helps to delay the appearance of premature aging signs on the skin like wrinkles and age spots. Studies have also shown that Vitamin B5 plays an important role in the pigmentation of hair and prevents it from losing its color until you are well into your older years.
Water Solubility
Since Vitamin B5 belongs to the group of water soluble vitamins, it does not add any type of toxic substance to the human body, thereby proving to be beneficial and effective for people from every age group and either gender.
Immune System Health
Vitamin B5 is very good at strengthening the immune system of the human body. This helps us fight against a number of infections and diseases. To decrease the chances of your body contracting something dangerous, be sure that your white blood cell count is maximized and your immune system is functioning properly by eating foods that are rich in vitamin B5.
Other Benefits
Vitamin B5 helps to relieve the human body from a number of detrimental problems like asthma, autism candedeases, osteoarthritis, Parkinson’s disease, premenstrual syndrome and many more. Vitamin B5 is one of the most versatile and flexible vitamins, and cannot be left out of a healthy diet!
Hemoglobin Levels
Vitamin B5 has been shown to enhance the level of hemoglobin in our bodies. It also assists the liver in metabolizing toxic substances. Finally, it is a fuel source for cell division and DNA reproduction.
From Wikipedia, the free encyclopedia
Pantothenic acid, also called pantothenate or vitamin B5 (a B vitamin), is a water-solublevitamin. For many animals, pantothenic acid is an essential nutrient. Animals require pantothenic acid to synthesize coenzyme-A (CoA), as well as to synthesize and metabolizeproteins, carbohydrates, and fats.
Pantothenic acid is the amide between pantoic acid and β-alanine. Its name derives from the Greek pantothen (πάντοθεν), meaning "from everywhere", and small quantities of pantothenic acid are found in nearly every food, with high amounts in avocado, whole-graincereals, legumes, eggs, meat, royal jelly, and yogurt.[7] It is commonly found as its alcohol analog, the provitamin panthenol (pantothenol), and as calcium pantothenate. Pantothenic acid is an ingredient in some hair and skin care products.[8]
Pantothenic acid was discovered by Roger J. Williams in 1933.[9]

Biological role

Only the dextrorotatory (D) isomer of pantothenic acid possesses biologic activity. The levorotatory (L) form may antagonize the effects of the dextrorotatory isomer.
Pantothenic acid is used in the synthesis of coenzyme A (CoA). Coenzyme A may act as anacyl group carrier to form acetyl-CoA and other related compounds; this is a way to transport carbon atoms within the cell. CoA is important in energy metabolism for pyruvate to enter the tricarboxylic acid cycle (TCA cycle) as acetyl-CoA, and for α-ketoglutarate to be transformed to succinyl-CoA in the cycle. CoA is also important in the biosynthesis of many important compounds such as fatty acids, cholesterol, andacetylcholine. CoA is incidentally also required in the formation of ACP, which is also required for fatty acid synthesis in addition to CoA.
Pantothenic acid in the form of CoA is also required for acylation and acetylation, which, for example, are involved in signal transduction and enzyme activation and deactivation, respectively.
Since pantothenic acid participates in a wide array of key biological roles, it is essential to all forms of life. As such, deficiencies in pantothenic acid may have numerous wide-ranging effects, as discussed below.

Sources

Dietary

Small quantities of pantothenic acid are found in most foods. The major food source of pantothenic acid is meat. The concentration found in human muscle is about double that in other animals' muscle. Whole grains are another good source of the vitamin, but milling removes much of the pantothenic acid, as it is found in the outer layers of whole grains.Vegetables, such as avocados and broccoli, also have an abundance. In animal feeds, the most important sources are alfalfa, cereal, condensed fish solutions, peanut meal, molasses, mushrooms, rice, wheat bran, and yeasts. The most significant sources of pantothenic acid in nature are coldwater fish ovaries and royal jelly.34

Supplementation

The derivative of pantothenic acid, pantothenol (panthenol), is a more stable form of the vitamin and is often used as a source of the vitamin in multivitamin supplements.:347Another common supplemental form of the vitamin is calcium pantothenate. Calcium pantothenate is often used in dietary supplements because, as a salt, it is more stable than pantothenic acid in the digestive mentation may improve oxygen utilization efficiency and reduce lactic acid accumulation in athletes.

Daily requirement

Pantothenate in the form of 4'phosphopantetheine is considered to be the more active form of the vitamin in the body; however, any derivative must be broken down to pantothenic acid before absorption.10 mg of calcium pantothenate is equivalent to 9.2 mg of pantothenic acid.

Age groupAgeRequirements
Infants0–6 months1.7 mg
Infants7–12 months1.8 mg
Children1–3 years2 mg
Children4–8 years3 mg
Children9–13 years4 mg
Adult men and women14+ years5 mg
Pregnant women(vs. 5)6 mg
Breastfeeding women(vs. 5)7 mg
  • United Kingdom RDA: 6 mg/day

Absorption


When found in foods, most pantothenic acid is in the form of CoA or acyl carrier protein (ACP). For the intestinal cells to absorb this vitamin, it must be converted into free pantothenic acid. Within the lumen of the intestine, CoA and ACP are hydrolyzed into 4'-phosphopantetheine. The 4'-phosphopantetheine is then dephosphorylated into pantetheine. Pantetheinase, an intestinal enzyme, then hydrolyzes pantetheine into free pantothenic acid.
Free pantothenic acid is absorbed into intestinal cells via a saturable, sodium-dependent active transport system. At high levels of intake, when this mechanism is saturated, some pantothenic acid may also be absorbed via passive diffusion. As intake increases 10-fold, however, absorption rate decreases to 10%.

Deficiency

Pantothenic acid deficiency is exceptionally rare and has not been thoroughly studied. In the few cases where deficiency has been seen (victims of starvation and limited volunteer trials), nearly all symptoms can be reversed with the return of pantothenic acid.
Symptoms of deficiency are similar to other vitamin B deficiencies. There is impaired energy production, due to low CoA levels, which could cause symptoms of irritability, fatigue, and apathy. Acetylcholine synthesis is also impaired; therefore, neurological symptoms can also appear in deficiency; they include numbness, paresthesia, and muscle cramps.Deficiency in pantothenic acid can also cause hypoglycemia, or an increased sensitivity to insulin. Insulin receptors are acylated with palmitic acid when they do not want to bind with insulin. Therefore, more insulin will bind to receptors when acylation decreases, causing hypoglycemia. Additional symptoms could include restlessness, malaise, sleep disturbances, nausea, vomiting, and abdominal cramps. In a few rare circumstances, more serious (but reversible) conditions have been seen, such as adrenal insufficiency and hepatic encephalopathy.
One study noted reports of painful burning sensations of the feet in tests conducted on volunteers. Deficiency of pantothenic acid may explain similar sensations reported in malnourished prisoners of war.
Deficiency symptoms in other nonruminant animals include disorders of the nervous, gastrointestinal, and immune systems, reduced growth rate, decreased food intake, skin lesions and changes in hair coat, and alterations in lipid and carbohydrate metabolism.

Toxicity

Toxicity of pantothenic acid is unlikely. In fact, no Tolerable Upper Level Intake (UL) has been established for the vitamin. Large doses of the vitamin, when ingested, have no reported side effects and massive doses (e.g., 10 g/day) may only yield mild intestinal distress, and diarrhea at worst. It has been suggested, however, that high doses of pantothenic acid might worsen panic attacks in those with panic disorder by prolonging the duration until adrenal exhaustion.[citation needed]
There are also no adverse reactions known following parenteral or topical application of the vitamin.

Research

Given pantothenic acid's prevalence among living things and the limited body of studies in deficiency, many uses of pantothenic acid have been the subject of research.

Diabetic ulceration

Foot ulceration is a problem commonly associated with diabetes, which often leads to amputation. A preliminary study completed by Abdelatif, Yakoot and Etmaan indicated that perhaps a royal jelly and panthenol ointment can help cure the ulceration. People with foot ulceration or deep tissue infection in the study had a 96% and 92% success rate of recovery. While these results appear promising, they need to be validated, as this was a pilot study; it was not a randomized, placebo-controlled, double-blind study.

Hypolipidemic effects

Pantothenic acid derivatives, panthenol, phosphopantethine and pantethine, have also been seen to improve the lipid profile in the blood and liver.In this mouse model, they injected 150 mg of the derivative/kg body weight. All three derivatives were able to effectively lower low-density lipoprotein (LDL), as well as triglyceride (TG) levels; panthenol was able to lower total cholesterol, and pantethine was able to lower LDL-cholesterol in the serum. The decrease in LDL is significant, as it is related to a decrease the risk of myocardial infarction and stroke. In the liver, panthenol was the most effective, as it lowered TG, total cholesterol, free cholesterol and cholesterol-ester levels.

Wound healing

A study in 1999 showed pantothenic acid has an effect on wound healing in vitro. Wiemann and Hermann found cell cultures with a concentration of 100 μg/mL calcium D-pantothenate increased migration, and the fibers ran directionally with several layers, whereas the cell cultures without pantothenic acid healed in no orderly motion, and with fewer layers.Cell proliferation or cell multiplication was found to increase with pantothenic acid supplementation. Finally, increased concentrations of two proteins, both of which have yet to be identified, were found in the supplemented culture, but not in the control. Further studies are needed to determine whether these effects will stand in vivo.

Hair care

Mouse models identified skin irritation and loss of hair color as possible results of severe pantothenic acid deficiency.As a result, the cosmetic industry began adding pantothenic acid to various cosmetic products, including shampoo. These products, however, showed no benefits in human trials. Despite this, many cosmetic products still advertise pantothenic acid additives.

Diabetic peripheral polyneuropathy


Twenty-eight out of 33 patients (84.8%) previously treated with alpha-lipoic acid for peripheral polyneuropathy reported further improvement after combination with pantothenic acid. The theoretical basis for this is that both substances intervene at different sites in pyruvate metabolism and are, thus, more effective than one substance alone. Additional clinical findings indicated diabetic neuropathy may occur in association with a latent prediabetic metabolic disturbance, and that the symptoms of neuropathy can be favorably influenced by the described combination therapy, even in poorly controlled diabetes.

Ruminant nutrition

No dietary requirement for pantothenic acid has been established as synthesis of pantothenic acid by ruminal microorganisms appears to be 20 to 30 times more than dietary amounts. Net microbial synthesis of pantothenic acid in the rumen of steer calves has been estimated to be 2.2 mg/kg of digestible organic matter consumed per day. The degradation of dietary intake of pantothenic acid is considered to be 78 percent. Supplementation of pantothenic acid at 5 to 10 times theoretic requirements did not improve performance of feedlot cattle